Expression and production optimization of the cationic antimicrobial peptide - indolicidin by the recombinant E. coli C41 (DE3) clones


  • Kanesan Panneer Selvam
  • Guruvu Nambirajan
  • Balasubramaniam Annamalai
  • Mohammed Alaidarous
  • Bader Mohammed Alshehri
  • Abdul Aziz A. Bin Dukhyil
  • Coimbatore Subramanian Shobana
  • Palanisamy Manikandan



cationic antimicrobial peptide, drug resistance, indolicidin, optimization


The cytoplasmic granules of bovine neutrophils naturally possess indolicidin - a promising cationic antimicrobial peptide as it displays inherent inhibitory activities against a broad type of microbial pathogens. In this study, a shake flask level production and expression optimizations of the indolicidin by the recombinant Escherichia coli C41 (DE3) clones (transformed with pET21a(+) plasmid carrying indolicidin gene) were carried out under standard conditions, as to determine the conditions required for maximal production. It was determined that a concentration of 1 mM of IPTG was effective, the 2×YT with salts and LB media at pH 7.5 with 3-6 h of incubation were required for maximal indolicidin expression.


Download data is not yet available.


Ahmad I, Perkins WR, Lupan DM, Selsted ME, Janoff AS (1995) Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochim Biophys Acta 26:109-114.

Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular Biology of the Cell, 3rd ed. Garland Publishing, New York.

Balbás P (2001) Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Mol Biotechnol 19:251-267.

Benincasa M, Scocchi M, Pacor S, Tossi A, Nobili D, Basaglia G, Busetti M, Gennaro R (2006) Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J Antimicrob Chemother 58:950-959.

Bertrand-Krajewski JL, Campisano A, Creaco E, Modica C (2005) Experimental analysis of the hydrass flushing gate and field validation of flush propagation modelling. Water Sci Technol 51:129-137.

Broedel SH, Papciak SM, Jones WR (2001) The selection of optimum media formulations for improved expression of recombinant proteins in E. coli. Vol 2: Athena Enzyme Systems Technical Bulletin.

Dumon-Seignovert L, Cariot G, Vuillard L (2004) The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21 (DE3), C41 (DE3), andC43 (DE3). Protein Expr Purif 37:203-206.

Feng XJ, Wang JH, Shan AS, Teng D, Yang YL, Yao Y, Yang GP, Shao YC, Liu S, Zhang F (2006) Fusion expression of bovine lactoferricin in Escherichia coli. Protein Expr Purif 47:110-117.

Froger A, Hall JE (2007) Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp 6:253.

Glick BR, Pasternak JJ (1998) Molecular Biotechnology: Principles and Applications of Recombinant DNA, 2nd ed. SM Press, Washington D.C.

Hara S, Yamakawa M (1996) Production in Escherichia of moricin, a novel type antibacterial peptide from the silkworm, Bombyx mori. Biochem Biophys Res Commun 220:664-669.

Haught C, Davis GD, Subramanian R, Jackson KW, Harrison RG (1998) Recombinant production and purification of novel antisense antimicrobial peptide in Escherichia coli. Biotechnol Bioeng 57:55-61.

Hwang SW, Lee JH, Park HB, Pyo SH, So JE, Lee HS, Hong SS, Kim JH (2001) A simple method for the purification of an antimicrobial peptide in recombinant Escherichia coli. Mol Biotechnol 18:193-8.

Kim J, Park JM, Lee BJ (1997) High-level expression and efficient purification of the antimicrobial peptide gaegurin 4 in E. coli. Protein Pept Lett 4:391-396.

Lee JH, Hong SS, Kim SC (1998) Expression of an antimicrobial peptide magain in by a promoter inversion system. J Microbiol Biotechnol 8:34-41.

Lee JH, Kim JH, Hwang SW, Lee WJ, Yoon HK, Lee HS, Hong SS (2000) High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem Biophys Res Commun 277:575-580.

Lee JH, Kim MS, Cho JH, Kim SC (2002) Enhanced expression of tandem multimers of the antimicrobial peptide buforin II in Escherichia coli by the DEAD-box protein and trxB mutant. Appl Microbiol Biotechnol 58:790-796.

Lee JH, Kim MS, Cho JH, Kim SC (2002) Enhanced expression of tandem multimers of the antimicrobial peptide buforin II in Escherichia coli by the DEAD-box protein and trxB mutant. Appl Microbiol Biotechnol 58:790-796.

Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289-98.

Morin KM, Arcidiacono S, Beckwitt R, Mello CM (2006) Recombinant expression of indolicidin concatamers in Escherichia coli. Appl Microbiol Biotechnol 70:698-704.

Ponti D, Mignogna G, Mangoni ML, De Biase D, Simmaco M, Barra D (1999) Expression and activity of cyclic and linear analogues of esculentin-1, an anti-microbial peptide from amphibian skin. Eur J Biochem 263:921-927.

Sambrook J and Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rded. Cold Spring Harbor Laboratory Press, New York.

Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16-22.

Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368-379.

Schluesener HJ, Radermacher S, Melms A, Jung S (1993) Leukocytic antimicrobial peptides kill autoimmune T cells. J Neuroimmunol 47:199-202.

Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425-435.

Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292-4295.

Shokri A, Sandén AM, Larsson G (2003) Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol 60:654-664.

Skosyrev VS, Kulesskiy EA, Yakhnin AV, Temirov YV, Vinokurov LM (2003) Expression of the recombinant antibacterial peptide sarcotoxin IA in Escherichia coli cells. Protein Expr Purif 28:350-356.

Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12:195-201.

Taguchi S, Nakagawa K, Maeno M, Momose H (1994) In vivo monitoring system for structure-function relationship analysis of the antibacterial peptide apidaecin. Appl Environ Microbiol 60:3566-3572.

Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Högbom M, vanWijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105:14371-14376.

World Health Organization (2014) WHO Expert Committee on Biological Standardization. World Health Organ Tech Rep Ser 987:1-266.

Xu Z, Peng L, Zhong Z, Fang X, Cen P (2006) High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol Prog 22:382-386.

Zhang LJ, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26:R14-R19.

Zheng CF, Simcox T, Xu L, Vaillancourt P (1997) A new expression vector for high level protein production, one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins. Gene 186:55-60.

Zhou L, Lin Q, Li B, Li N, Zhang S (2009) Expression and purification the antimicrobial peptide CM4 in Escherichia coli. Biotechnol Lett 31:437-441.




How to Cite

Selvam, K. P., Nambirajan, G., Annamalai, B., Alaidarous, M., Alshehri, B. M., Bin Dukhyil, A. A. A., Shobana, C. S. and Manikandan, P. (2018) “Expression and production optimization of the cationic antimicrobial peptide - indolicidin by the recombinant E. coli C41 (DE3) clones”, Acta Biologica Szegediensis, 62(1), pp. 61–66. doi: 10.14232/abs.2018.1.61-66.




Most read articles by the same author(s)