Supplementary Table 1 Chrome Azurol S (CAS) reaction rate of the metal-tolerant endophytes on solid Potato Dextrose Agar (Agar) supplemented with Cu^{2+} , Pb^{2+} , Zn^{2+} and Cd^{2+} of varying concentrations. The symbols \pm for rates < 0.5 mm/day (mild) and + for rates between 0.5-1.0 mm/day (moderate).

Endophytes	Days _	Metal concentrations (mg L ⁻¹)										
		Cu			Pb		Zn		Cd		Control	
		10	25	50	10	25	10	25	10	25	0	
<i>Bipolaris</i> sp.	7	±	±	±	+	+	+	+	+	±	+	
LF7	14	±	±	±	±	±	+	+	+	±	±	
	21	±	±	±	±	±	±	±	±	±	±	
	28	±	±	±	±	±	±	±	±	±	±	
D. miriciae	7	±	+	±	+	+	+	+	±	+	+	
LF9	14	±	+	±	+	++	+	+	+	+	+	
	21	±	±	±	+	+	+	+	+	+	+	
	28	±	±	±	±	+	+	+	+	+	+	
<i>T. asperellum</i> LF11	7	±	+	±	++	++	+	++	+	+	++	
	14	±	±	±	+	++	+	+	+	+	++	
	21	±	±	±	+	++	±	+	+	++	+	
	28	±	±	±	+	+	±	+	+	+	+	
P. asparagi	7	±	±	±	+	+	+	+	+	+	+	
LF15	14	±	±	±	+	+	±	±	±	±	±	
	21	±	±	±	±	+	±	±	±	±	±	
	28	±	±	±	±	±	+	±	+	+	±	
S. bicolour	7	+	±	±	+	+	+	+	+	+	+	
LF22	14	±	±	±	±	+	±	+	±	+	±	
	21	±	±	±	±	±	±	±	±	±	±	
	28	±	±	±	±	±	±	±	±	±	±	

Supplementary Table 2 Growth parameters of oil palm ramets inoculated with metal-tolerant *D. miriciae* LF9 in metal-laden soils consisting of Pb²⁺, Zn²⁺, Cd²⁺ and Cu²⁺ for *in vivo* plant growth promotion study. Controls were endophyte-free ramets without the presence of metals. Means \pm standard deviation (\pm SD); same letters for each parameter in a metal concentration not significantly different (HSD_(0.05)).

	Pb ²⁺			Zı	n ²⁺	С	d ²⁺	Cu ²⁺		
	Day	10	25	10	25	10	25	10	25	50
	7	13.4±1.4 ^a	12.1±1.0 ^b	13.7±1.3 ^b	13.0±0.5 ^b	13.8±1.2 ^a	13.2±1.0 ^a	14.7±1.7ª	13.9±1.7ª	12.8±0.7ª
Height (cm)	14	13.3±1.5ª	13.2±1.0 ^{ab}	14.0±0.9 ^b	13.7±0.8 ^{ab}	14.9±3.5ª	13.2±1.4ª	14.9±0.7ª	14.0±0.6ª	14.1±3.0ª
iicigiit (ciii)	21	14.3±1.1ª	13.4±0.4 ^{ab}	15.1±1.0 ^{ab}	16.2±1.8 ^{ab}	15.3±0.6 ^a	14.0±1.8 ^a	17.2±3.7ª	17.4±3.8 ª	15.2±2.7ª
	28	15.7±4.0ª	14.3±0.9 ^a	17.9±2.2ª	16.8±1.5 ^a	15.6±0.9ª	15.8±3.1ª	20.3±1.9ª	17.7±4.1 ^a	18.2±4.0ª
	7	0.4±0.1ª	0.4±0.1ª	0.4±0.1 ^b	0.4±0.1ª	0.5 ± 0.1^{b}	0.5±0.1ª	0.4±0.0°	0.4±0.1ª	0.4±0.1ª
	14	0.4±0.1ª	0.4±0.1ª	$0.4{\pm}0.1^{b}$	$0.5{\pm}0.0^{a}$	0.5 ± 0.1^{b}	0.5±0.1ª	0.5 ± 0.1^{bc}	$0.4{\pm}0.7^{a}$	0.5±0.1ª
weight (g)	21	0.5±0.1ª	0.5 ± 0.2^{a}	0.6 ± 0.2^{ab}	0.5±0.2ª	0.6±0.1 ^b	0.6±0.1ª	0.6±0.1 ^{ab}	0.4±0.1ª	0.6±0.3ª
	28	0.6±0.2ª	0.6±0.0ª	0.8±0.1ª	0.5±0.3ª	0.8±0.0ª	0.6±0.1ª	0.9±0.1ª	0.5±0.1ª	0.8±0.4ª
	7	0.2±0.1ª	0.2±0.1ª	0.2±0.1ª	0.2±0.1ª	0.2±0.1b	0.2±0.0ª	0.2±0.0 ^b	0.2±0.1ª	0.2±0.1ª
	14	0.3±0.0ª	0.2±0.1ª	0.2±0.1ª	0.2±0.0ª	0.2±0.0b	0.2±0.0ª	0.2±0.1 ^{ab}	0.2±0.1ª	0.3±0.1ª
Root mass (g)	21	0.3±0.0ª	0.2±0.1ª	0.3±0.1ª	0.2±0.1ª	0.2±0.1b	0.3±0.1ª	0.3±0.1 ^{ab}	0.3±0.0ª	0.3±0.1ª
	28	0.3±0.0ª	0.3±0.2ª	0.3±0.1ª	0.3±0.0ª	0.4±0.0 ^a	0.3±0.1ª	0.3±0.1ª	0.5±0.4ª	0.3±0.0 ^a
<u><u> </u></u>	7	0.3±0.0ª	0.3±0.0ª	0.3±0.1ª	0.3±0.1ª	0.4±0.1ª	0.4±0.1ª	0.4±0.1ª	0.3±0.1ª	0.3±0.1ª
Stem	14	0.4±0.1ª	0.4±0.1ª	0.4±0.1ª	0.4±0.1ª	0.4±0.0 ^a	0.4±0.1ª	0.4±0.1ª	0.4±0.1ª	0.4±0.1ª
circumierence	21	0.4±0.1ª	0.4±0.0ª	0.4±0.0ª	0.4±0.1ª	0.4±0.2ª	0.4±0.1ª	0.4±0.0ª	0.4±0.1ª	0.4±0.0ª
(cm)	28	0.5±0.1ª	0.4±0.1ª	0.4±0.0 ^a	0.4±0.0ª	0.5±0.0 ^a	0.5±0.1 ^a	0.4±0.0 ^a	0.4±0.0ª	0.5±0.1ª

Supplementary Table 3 Growth parameters of oil palm ramets inoculated with metal-tolerant *T. asperellum* LF11 in metal-laden soils consisting of Pb²⁺, Zn²⁺, Cd²⁺ and Cu²⁺ for *in vivo* plant growth promotion study. Controls were endophyte-free ramets without the presence of metals. Means \pm standard deviation (\pm SD); same letters for each parameter in a metal concentration not significantly different (HSD_(0.05)).

	Pb ²⁺		b^{2+}	Zn ²⁺		С	d^{2+}	Cu ²⁺		
	Day	10	25	10	25	10	25	10	25	50
Height (cm)	7	13.4±0.8ª	13.1±1.5 ^a	13.0±1.3 ^a	13.0±0.4 ^a	14.7±0.3ª	14.2±1.9 ^a	15.3±2.5ª	15.6±1.8 ^a	14.6±1.5 ^{ab}
	14	14.5±0.7 ^a	15.1±1.1ª	14.4±2.6 ^a	13.5±1.3ª	14.9±2.0 ^a	15.3±2.6 ^a	14.3±1.2 ^a	15.4±1.8 ^a	18.2±0.4 ^a
	21	15.0±1.8 ^a	14.8±1.5 ^a	15.3±1.8 ^a	15.5±1.4 ^a	15.6±0.0 ^a	15.3±0.0 ^a	13.9±2.9ª	14.8±0.7 ^a	13.7±2.3 ^b
	28	13.6±0.6ª	14.2±0.9 ^a	13.4±0.0 ^a	13.7±1.3ª	11.4±0.3 ^b	13.7±0.3ª	13.1±2.0 ^a	14.5±1.9 ^a	13.9±0.2 ^b
	7	0.4±0.0ª	0.3±0.1ª	0.4±0.1ª	0.4±0.2 ^a	0.4±0.0 ^a	0.5±0.0ª	0.4±0.1ª	0.4±0.1ª	0.4±0.0 ^a
Weight (g)	14	0.4±0.1ª	0.3±0.1ª	0.5±0.1ª	0.4±0.0 ^a	0.4±0.1ª	0.4±0.1 ^{ab}	0.5±0.2ª	0.3±0.1ª	0.4±0.1ª
	21	0.3±0.1 ^{ab}	0.3±0.0ª	0.3±0.0 ^{ab}	0.4±0.1ª	0.5±0.2ª	0.3±0.0 ^{bc}	0.3±0.1ª	0.2±0.1ª	0.4±0.2 ^{ab}
	28	0.2 ± 0.0^{b}	0.4±0.2 ^a	0.2 ± 0.0^{b}	0.3±0.0ª	0.2±0.1ª	0.2±0.0°	0.3±0.1ª	0.2±0.1ª	$0.2{\pm}0.0^{b}$
Root mass (g)	7	$0.3{\pm}0.0^{a}$	0.2±0.0ª	0.2±0.1ª	0.2±0.1ª	0.3±0.0ª	0.3±0.0ª	0.2±0.0ª	$0.2{\pm}0.0^{a}$	0.3±0.1ª
	14	$0.3{\pm}0.0^{a}$	0.2±0.1ª	0.3±0.1ª	0.2±0.0ª	0.3±0.0ª	0.2±0.1ª	0.3±0.1ª	0.2±0.1ª	$0.2{\pm}0.0^{ab}$
	21	0.1±0.0 ^b	0.2±0.1ª	0.2±0.1ª	0.2±0.1ª	0.2±0.1ª	0.2±0.0 ^{ab}	0.2±0.1ª	0.1±0.0ª	0.2±0.1 ^{ab}
	28	0.1 ± 0.0^{b}	0.2±0.1ª	0.1±0.0 ^b	0.1±0.0ª	0.1±0.1ª	0.1 ± 0.0^{b}	0.2±0.1ª	0.1±0.1ª	0.1 ± 0.0^{b}
	7	0.4±0.1ª	0.4±0.0ª	0.5±0.1ª	0.3±0.0ª	0.3±0.0ª	0.5±0.1ª	0.4±0.1ª	$0.4{\pm}0.0^{a}$	0.4±0.0ª
Stem circumference	14	0.4±0.1ª	0.4±0.1ª	0.4±0.1ª	0.3±0.0 ^a	0.3±0.1ª	0.4±0.1 ^{ab}	0.4±0.1ª	0.3±0.0 ^b	0.3±0.1 ^{ab}
(cm)	21	0.3 ± 0.0^{a}	0.3±0.1ª	0.3±0.0 ^a	0.3±0.1ª	0.4±0.1ª	0.3 ± 0.0^{b}	0.3±0.1ª	0.3±0.0 ^b	0.3±0.0 ^{ab}
	28	0.3±0.0ª	0.3±0.0 ^a	0.3±0.0ª	0.3±0.1ª	0.3±0.1ª	0.3±0.0 ^b	0.3±0.0 ^a	0.3±0.1 ^b	0.2±0.0 ^b

Supplementary Fig. 4 Activities of ACC deaminase (µmol mg protein⁻¹ hr⁻¹) by metal-tolerant endophytes *Bipolaris* sp. LF7, *D. miriciae* LF9, *T. asperellum* LF11, *P. asparagi* LF15 and *S. bicolour* LF22 in (A) non-metal control as well as under the influence of (B) $Cu^{2+}(C) Pb^{2+}(D) Zn^{2+}(E) Cd^{2+}$. Metal solutions supplemented were 10 and 25 mg/L, with additional 50 mg/L for Cu²⁺ (as bracketed in legends).

Supplementary Fig. 4 Activities of ACC deaminase (µmol mg protein⁻¹ hr⁻¹) by metal-tolerant endophytes *Bipolaris* sp. LF7, *D. miriciae* LF9, *T. asperellum* LF11, *P. asparagi* LF15 and *S. bicolour* LF22 in (A) non-metal control as well as under the influence of (B) $Cu^{2+}(C) Pb^{2+}(D) Zn^{2+}(E) Cd^{2+}$. Metal solutions supplemented were 10 and 25 mg/L, with additional 50 mg/L for Cu²⁺ (as bracketed in legends).

