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ABSTRACT

Somatic plant cells are not terminally differentiated and can therefore regain

KEY WORDS

totipotency and initiate embryo development under appropriate conditions. Although this

phenomenon is well known for more than 50 years, the details are still mysterious as we do not
know why certain genotypes, explants or cells are more amenable for somatic embryogenesis
than the others. It is also not know why so many different conditions can be used to initiate
somatic embryogenesis and what are the key molecular steps being common in all cases. Recent
progress in plant molecular and developmental biology now allows us to establish new hypoth-
eses on the way of transition of somatic cells to the embryogenic state. One of the possible
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hypotheses is presented in this short review.

Plant cells possess remarkable developmental plasticity. One
of the most intriguing examples of this plasticity is somatic
embryogenesis during which differentiated plant cells regain
totipotency and develop into embryos. Despite the fact that
somatic embryogenesis is widely used for in vitro plant
propagation the biological background of this plant-specific
phenomenon is hardly known. It is not surprising therefore
that a special issue of the Science magazine listed among the
current 125 most important scientific questions the one: “How
does a single somatic cell become a whole plant?” (Kennedy
and Norman 2005). Exploration of the physiological and mo-
lecular events underlying somatic embryogenesis is of general
interest as it may serve to improve practical applications and
provide basic knowledge on the acquisition of totipotency
(e.g. by stem cells (Grafi and Avivi 2004)) and the regula-
tion of developmental switches (Costa and Shaw 2007). In
this respect the induction phase of somatic embryogenesis is
of primary interest. Although during the last couple of years
there was a great progress in the identification of key mo-
lecular players involved in the process (Fehér 2006; Feher et
al. 2003) we are still far to understand how dedifferentiation
leads to cellular totipotency and why it is expressed in only
certain cells of certain genotypes.

A hypothesis of somatic embryo induction
based on the current knowledge

Somatic embryogenesis occurs in a wide variety of species
and explants but the genetic determination of embryogenic
capability is clear from studies where it was transferred from
embryogenic to non-embryogenic genotypes (e.g. Moltrasio
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et al. 2004). As the number of tissue culture systems achiev-
ing somatic embryogenesis in formerly recalcitrant species
is increasing, there is a view that embryogenic capability of
somatic plant cells is a rather general feature but the appro-
priate conditions allowing the expression of this trait greatly
varies (Fehér 2006). It can be hypothesized that although
plant cells in general have the capability for embryogenesis,
the expression of this trait (the acquisition of embryogenic
competence) is dependent on many circumstances mainly
determined by the given physiological state of the cell which
is determined by its genetic and developmental conditions and
by environmental cues. Briefly: the genetically determined
embryogenic potential may allow the expression of embryo-
genic competence under appropriate conditions which will
result in the initiation of embryo development in response to
an appropriate developmental signal in those cells only where
the physiological conditions are favorable (Fig. 1). This com-
plicated interaction of genetic and physiological factors may
explain why only certain genotypes and certain cells can go
through the whole process of somatic embryogenesis.

The agents used to induce in vitro embryogenesis in
somatic plant cells are highly variable ranging from various
plant hormones to stress treatments (Feher et al. 2003). The
most widely used inducer, however, is auxin, especially 2,4-
dichlorephenoxyacetic acid (2,4-D). It can be stated in gen-
eral, that most if not all treatments reported to induce somatic
embryogenesis, including 2,4-D, can affect the auxin balance
within the cells. In this respect the source of the explant has
also a significant contribution: explants with high levels of
endogenous auxin may be more responsive (Jiménez and
Thomas 2006) and may not even require exogenous auxin
for induction (Ikeda-Iwai et al. 2003). In many systems, fol-
lowing the induction, somatic embryo development proceeds
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Figure 1. A hypothesis on the induction of somatic embryogenesis in differentiated plant cells. Genetically and developmentally determined
cellular differentiation inhibits or allows the expression of embryogenic potential depending on the genotype, developmental state and tissue
type. Cells exhibiting this potential are responsive to strong aspecific signals such as auxin imbalance and stress that may result in the release
of the chromatin-mediated repression of embryogenic development. The embryogenic program than proceeds on a self-regulated way under
permissive physiological conditions ensuring the establishment of auxin autotrophy and polarity.

under auxin free conditions (e.g. Dudits et al. 1991) which
indicates that the cells become capable for self-supporting
auxin synthesis. Establishment of auxin synthesis and polar
auxin transport is a key step in meristem formation underlying
embryo development (Nawy et al. 2008).

Several attempts have been made to identify key genes
which may govern somatic embryogenesis in response to the
induction signal (Thibaud-Nissen et al. 2003; Rose and Nolan
2006; Suprasanna and Bapat 2006; Tang and Newton 2006;
Domoki et al. nd; Legrand et al. 2007; Yazawa and Kamada
2007; Zeng et al. 2006, 2007). These attempts resulted in
the identification of many genes the expression of which is
up- or down regulated during embryogenesis. These gene
expression changes clearly indicate that somatic embryo
induction evokes a general cellular reorganization character-
ized by the expression of stress responses, the entry into the
cell division cycle, the alteration of cellular metabolism etc
(Feher et al. 2003). Although signaling molecules like the
somatic embryogenesis receptor kinase (SERK; (Schmidt et
al. 1997; Hecht et al. 2001)) or the MADS-box transcritption
factor baby boom (BBM; (Boutilier et al. 2002)) could also
be identified and their overexpression enhances the regen-
eration/embryogenic capability of the cells (Srinivasan et
al. 2007), a single key gene responsible for the induction of
the developmental pathway could not be identified in these
approaches.

Important molecular aspects of somatic embryogenesis
could be revealed, however, due to the studies of various
Arabidopsis mutants. The transcription factors Leafy Coty-
ledonl and 2 (LEC1 and 2; have been shown to be required
for early as well as late steps during zygotic embryo develop-
ment and their overexpression may induce ectopic embryo
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development in leaf cells (Lotan et al. 1998; Stone et al. 2001,
2008); (Kwong et al. 2003)). The Wuschel transcription factor
having an important role in shoot meristem organization and
maintenance can evoke similar response if overexpressed in
transgenic plants (Mayer et al. 1998; Zuo et al. 2002). The
expression of these genes could also be linked to somatic
embryogensis (Yazawa et al. 2004; Gaj et al. 2005; Singla
et al. 2007); (Braybrook et al. 2006; Domoki et al. nd; Rose
and Nolan 2006).

The most remarkable observation, however, is related to
the pickle mutant (Ogas et al. 1999). In pickle mutants in place
of some of the root meristems embryos develop. The pickle
gene codes for a chromatin remodeling ATPase and its activity
is required to suppress the embryogenic program (including
the expression of embryogenesis related gene expression like
of LEC1 and 2) in somatic cells (Ogas et al. 1999; Dean Rider
et al. 2003; Henderson et al. 2004; Li et al. 2005; Rider et al.
2004). This observation means that there is a need to change
of our thinking on the “induction” of somatic embryogenesis
as it is rather a “release from suppression” (Fehér 2006). Now
it is well accepted that the overall gene expression pattern of
an eukaryotic cells is controlled on the chromatin level via the
organization of the chromatin into loose active and compact
inactive or silenced regions (Li et al. 2002).

Somatic embryogenesis may therefore occur if the genes
responsible for the embryogenic developmental program are
released from chromatin-mediated gene silencing in vegeta-
tive cells. This may happen in response to strong aspecific
signals, such as high auxin dose and/or sublethal stress, which
evoke the activation of large chromatin regions (Fehér 20006).
This hypothesis may explain why less differentiated cells (e.g.
immature embryos) are more amenable for somatic embryo-



genesis and why various aspecific signals can evoke similar
embryogenic response.

Open questions and future prospects

Despite the current above reported progress in their identi-
fication, many embryogenesis-related genes are not known
yet. Especially embryogenesis-related chromatin remodel-
ing factors and their regulation are of special interest in
this respect. The identification of specific genomic regions
silenced in vegetative but active in embryogenic cells would
be of great significance. Although the central role of auxin
is well accepted, we do not know how embryogenic cells
become hormone autonomous. The physiological conditions
allowing the expression of totipotency should also be more
clearly defined. The comparison of the molecular events fol-
lowing fertilization and somatic embryo induction is required.
Similarly, the comparison of basic information gained with
embryogenic competent plant cells and pluripotent animal
stem cells can result in more general conclusions. Finally, the
acquired knowledge should be converted into practical proce-
dures improving the embryogenic response of plant cells.
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