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ABSTRACT                        A comparative study was performed on the conformational stabilities of trypsin
and α-chymotrypsin. At 45ºC, trypsin was most stable at pH 3, while the highest stability of α-
chymotrypsin was observed at pH 5. With both ester and amide substrates, trypsin displayed
activation at pH 3. In the case of α-chymotrypsin, activation was detected at pH 5 only with
the amide substrate. The time curves of heat inactivation were complex. For both enzymes,
autolysis proceeded with the highest velocity at pH 8. The results obtained on α-chymotrypsin
suggested consecutive reactions: the first step, heat denaturation of the protein, is followed
by digestion of the damaged molecules. Acta Biol Szeged 45(1-4):43-49 (2001)
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too. The present paper reports results on the heat inactivation

of trypsin and α-chymotrypsin.

Materials and Methods

Materials

Bovine pancreas trypsin (EC 3.4.21.4), α-chymotrypsin (EC

3.4.21.1), N-benzoyl-L-arginine ethyl ester (BAEE), N-

acetyl-L-tyrosine ethyl ester (ATEE), N-benzoyl-DL-ar-

ginine-p-nitroanilide (BAPNA) and N-carbobenzoxy-L-

phenylalanine-p-nitroanilide (CPPNA) were purchased from

Sigma-Aldrich Company (Budapest, Hungary). The specific

activities were 40-60 units/mg for α-chymotrypsin and

10,000 units/mg for trypsin. All other chemicals were reagent

grade products (Reanal, Budapest, Hungary).

Assays of enzyme activities

The activity of trypsin was measured by following the

increase in absorbance at 253 nm (Geiger and Fritz 1984) in

a reaction mixture (3 ml) containing 46.7 mM Tris/HCl

buffer (pH 8.0), 19 mM CaCl2 and 0.9 mM BAEE, the

reaction being initiated by the addition of 5 units of enzyme.

One unit of enzyme activity was defined as the amount of

enzyme that hydrolyses 1 µM of BAEE per min at pH 8.0 and

at 25ºC. The activity measurements with BAPNA were

carried out as follows: the reaction mixture contained 150

mM triethanolamine/HCl (pH 8.0), 15 mM CaCl2, 0.8 mM

BAPNA and 5-10 units of trypsin (Erlanger et al. 1961). The

amount of p-nitroanilide released was monitored via the

increase in absorbance at 410 nm. For the measurement of

α-chymotrypsin activity, ATEE was used and the changes in

absorbance at 237 nm were followed in a reaction mixture

(3 ml) containing 40 mM Tris/HCl (pH 8.0), 50 mM CaCl2

Trypsin and α-chymotrypsin are well-known serine proteases

(Desnuelle 1971; Keil 1971; Cohen et al. 1981; Journak and

McPherson 1987). The serine proteases exhibit structural and

chemical similarities, but their specificities are different

(Polgár 1989).

According to early observations, trypsin is stable at pH

3 at low temperatures for weeks. It can be reversibly heat

denaturated (Lazdunski and Delaage 1965). Lazdunski and

Delaage (1967) investigated the effect of pH on the tempera-

ture-induced reversible denaturation of bovine trypsin.

D’Albis (1970) conducted a thermodynamic study on the

reversible thermodenaturation of trypsin in the pH range 1.0-

3.4. The conformation of trypsin is well ordered between pH

7 and 8, but is considerably less ordered at more acidic or

alkaline pH values. Both enzymes are susceptible to autoly-

sis. Chymotrypsin A is most stable at pH 3, but even at this

pH autolysis proceeds, although very slowly. At pHs lower

than 3 or higher than 10, the enzyme undergoes conforma-

tional changes (Walsh and Wilcox 1970).

The conversion of trypsin to chymotrypsin and vice versa

by site-directed mutagenesis is a model for protein engineers

(Gráf et al. 1987; Heldstrom et al. 1992). Site-directed

mutagenesis could modify the conformational stabilities of

the enzyme derivatives. For an appraisal of the stability

changes induced, a kinetic re-evaluation of the conforma-

tional stabilities of the parent enzymes appeared reasonable.

Heat denaturation experiments comprise a simple and

inexpensive method of investigation of the conformational

stabilities of proteins, and are useful for comparative studies,
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and 0.5 mM ATEE (Schwert and Takenaka 1955). The

reaction was initiated by the addition of 4.5 units of enzyme.

One unit of enzyme activity was defined as the amount of

enzyme that catalyses the hydrolysis of 1 µM of ATEE per

min at pH 8.0 and at 25ºC. For the activity determination with

CPPNA as substrate, the reaction mixture (3.0 ml) contained

50 mM Tris/HCl (pH 8.0), 0.1 mM CPPNA in DMF and 5

units of α-chymotrypsin (Delmar et al. 1979). The amount

of p-nitroanilide released was monitored via the increase in

absorbance at 410 nm.

Stability tests

The pH dependencies of the conformational stabilities of

trypsin and α-chymotrypsin were studied in the pH range 3-

7 by using 0.1 M glycine/HCl buffer (pH 3), 0.1 M acetic

acid/NaOH buffer (pH 4-5), 0.1 M citric acid/NaOH buffer

(pH 6) and 0.1 M triethanolamine/HCl buffer (pH 7), respec-

tively. Enzyme solutions of 0.1 and 1.0 mg/ml were prepared

with the different buffers and incubated for 5 h at various

temperatures. Aliquots of 100-200 µl were withdrawn and the

residual activities were determined.

Measurements of ninhydrin-positive species

The appearance of ninhidrin-positive substances during heat

treatment was followed quantitatively according to the

procedure of Moore and Stein (1948).

Results

Effects of pH on stabilities of trypsin and a-
chymotrypsin

The pH dependences of the stabilities of trypsin and α-

chymotrypsin were studied at 45ºC, both ester and amide

substrates being used for the determination of residual

activities. The protein concentration of the enzyme solution

was 1 mg/ml.

For trypsin, similar results were obtained with either

BAEE or BAPNA as substrate (Fig. 1), but the loss in

amidase activity was somewhat faster, especially in the acidic

media. At pH 3, activation was observed with both substrates

(18-20% and 16-17%, respectively). Trypsin exhibited the

highest stability at this pH. The inactivation was faster in the

solutions with pH > 6 than that in the media with lower pHs.

The results obtained with α-chymotrypsin are depicted in

Fig. 2. Significant differences were found in the stabilities of

esterase (ATEE substrate) and amidase (CPPNA substrate)

activities, especially at pH < 6. The highest stability of α-

chymotrypsin was observed at pH 5. At this pH, the esterase

activity was preserved for at least 4 h, while with the amide

substrate activation of at most 24% was measured. Above pH

6 the inactivation was more rapid than that in the media with

lower pHs. At pH 9, the enzyme was practically inactivated

during the first 20 min of incubation.

Effects of temperature on stabilities of trypsin
and α-chymotrypsin

The temperature dependence of the stability of α-chymo-

trypsin was studied at pH 4 in citrate buffer and at pH 7 in

phosphate buffer, with ATEE as substrate. The protein

concentration was 1 mg/ml. The results are presented in Fig.

3. At pH 4, the enzyme retained about 20% of its starting

activity after incubation for 5 h at 50ºC, while at pH 7 the

enzyme practically lost all of its activity. At 55ºC, the

inactivation was complete during the first 20 min of incuba-

tion. In a 1 mg/ml solution, in phosphate buffer (pH 8) at

55ºC, trypsin lost more than 90% of its initial esterase and

amidase activities during a 5-min incubation.

Effects of protein concentration on stabilities
of trypsin and α-chymotrypsin

The effects of 0.1 and 1 mg/ml protein concentrations on the

stability of trypsin were studied in Tris/HCl buffer (pH 8) at

55ºC, with both ester (BAEE) and amide (BAPNA) as

substrates. After incubation for 2.5 min in the 0.1 mg/ml

solution, trypsin had lost 55.6% of its original esterase

activity, while in the 1 mg/ml solution only 11.5% of the

starting activity was preserved. As regards the amidase

activity, after incubation for 5 min in 0.1 mg/ml solution the

activity loss was 61.6%, while in 1 mg/ml solution it was

93.2%. In the case of α-chymotrypsin, the effects of the

protein concentration on the stability were studied at 50ºC at

pH 4 (sodium citrate) and pH 7 (potassium phosphate) in 0.1

and 1 mg/ml solutions, with ester (ATEE) and amide

(CPPNA) as substrates. The inactivation in the 0.1 mg/ml

solution was faster for both types of substrates (Fig. 4).

Autolysis of trypsin and α-chymotrypsin

Samples from the heat inactivation experiments were submit-

ted to the ninhydrin test. The time curves of liberation of

ninhydrin-positive species from trypsin are shown in Fig. 5.

In 1 mg/ml solutions at pH 3 and 4, ninhydrin-positive

substances could not be demonstrated, but at pH > 5 the

autolysis proceeded rapidly. The highest rate was experi-

enced at pH 8 in Tris/HCl buffer. The process involved at

least two phases, a fast and a slower one. At that pH in the

0.1 mg/ml solution, the liberation of ninhydrin-positive

substances was not detected at 45ºC and 55ºC.

In 0.1 mg/ml α-chymotrypsin solutions, heat-treated at

45ºC and 50ºC and at pH 4 and 7, respectively, ninhydrin-

positive species were not liberated. In 1 mg/ml solutions at

45ºC and in the pH range 3-4.5, ninhydrin-positive substanc-

es could likewise not be detected. At pH 6, a lag period was

followed by the accelerated formation of autolysis products.

At pH > 7, the time curves did not exhibit any lag period and

the process proceeded rapidly. The maximum velocity was

measured at pH 8 in potassium phosphate or Tris/HCl buffer
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(Fig. 6). The autolysis involved at least two phases, similarly

as for trypsin. At higher temperature (50ºC), the lag period

was observed only at pH 4 in the first 25 min of incubation

(Fig. 7).

Discussion

Trypsin and α-chymotrypsin display close structural similar-

ities. The backbone structure of the two proteases are highly

homologous and the homology also extends to the catalytic

triad and substrate-binding pocket regions (Steitz et al. 1969;

Birktoft and Blow 1972; Polgár 1989). In spite of the struc-

tural similarities, however, there are significant differences

in their conformational stabilities. In earlier work (Simon et

al. 1998), we established that, in miscible polar solvents such

as acetonitrile, ethanol and 1,4-dioxane, α-chymotrypsin has

quite different behaviour from that of trypsin. The differences

in the conformational stability are confirmed by the heat

treatment experiments. At 45ºC, trypsin is most stable at pH

3, while the highest stability of α-chymotrypsin was ob-

served at pH 5. With both ester and amide substrates, trypsin

shows activation at pH 3. In the case of α-chymotrypsin,

activation was detected at pH 5 only with the amide substrate.

The time curves of heat inactivation are complex for both

enzymes, in consequence of the existence of different

Figure 1. Effects of pH on inactivation of trypsin at 45ºC. Protein concentration: 1 mg/ml. Substrates: BAEE (A, B) and BAPNA (C, D). Buffers
(0.1 M): citrate (◊) pH 3, (♦) pH 4, (Ο) pH 5, (l) pH 6, phosphate (x) pH 6, (∆) pH 7, (o) pH 8; borate (n) pH 9. For details, see text.
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molecular forms. The stabilities of the different molecular

forms of trypsin are temperature- and pH-dependent (Laz-

dunski and Delaage 1967). At 20ºC, the acidification of

trypsin from pH 8 to pH 0.5 results in the appearance of 3

reversible equilibria. The most important structural change

in the alkaline range involves the unmasking of the abnormal

tyrosines. This process is reversible, but is followed by an

irreversible denaturation. α-chymotrypsin can exist in two

major conformational states, only one of which is active.

Stoesz and Lumry (1978) examined the pH and ionic strength

dependence of the transition between the active and inactive

forms. At low pH (pH 2.0-6.0), the equilibrium is very

dependent on the salt concentration; high salt concentrations

effectively stabilize the active conformation. This apparent

stabilization is an artifact due to the dimerization of the active

form of α-chymotrypsin. At pH 6.0-8.0, the dimerization

does not occur. At pH > 6, the pH dependence can be de-

scribed by a two-ionization mechanism at all ionic strengths.

The self-association of α-chymotrypsin was studied by

Pandit and Rao (1974). We suspect that the transient activa-

Figure 2. Effects of pH on inactivation of α-chymotrypsin at 45ºC. Protein concentration: 1 mg/ml. Substrates: ATEE (A,B) and CPPNA (C, D).
Buffers (0.1 M): citrate (◊) pH 3, (♦) pH 4, (Ο) pH 5, (l) pH 6, phosphate (x) pH 6, (∆) pH 7, (o) pH 8; borate (n) pH 9. For details, see text.
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tions during the heat treatment stem from the rise of a

molecular subform with a higher catalytic activity, but a

lower stability.

The autolysis proceeds with the highest velocity at pH 8

for both enzymes. At pH 3 and 4, the liberation of the

ninhydrin-positive substances from α-chymotrypsin mol-

ecules cannot be detected. A similar phenomenon was

observed in 0.1 mg/ml solutions (in spite of the fast heat

denaturation) at pH 4 and 7 at 45ºC and 50ºC for α-chymo-

trypsin and at pH 8 at 45ºC and 50ºC for trypsin. The detailed

investigation by Kumar and Hein (1970) suggested that the

mechanism of autolysis of α-chymotrypsin can be explained

by an apparent second-order inactivation process. Autodi-

gestion is chemically distinguishable from the process of

denaturation. Our experimental results support these find-

ings.

Figure 3. Effects of temperature on inactivation of α-chymotrypsin at pH 4 in citrate buffer (A) and at pH 7 in phosphate buffer (B) with ATEE
as substrate. Protein concentration: 1 mg/ml. Temperatures: (*) 45ºC, (s) 50ºC, (+) 55ºC. For details, see text.

Figure 4. Effects of protein concentration on inactivation of α-chymotrypsin at 50ºC at pH 4 in citrate buffer and at pH 7 in phosphate buffer,
with ATEE (A) and CPPNA (B) as substrates. Protein concentrations and pHs: (O) 0.1 mg/ml and pH 4, (l) 1 mg/ml and pH 4, (∆) 0.1 mg/ml and
pH 7, (s) 1 mg/ml and pH 7. For details, see text.
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The results obtained on the heat denaturation of α-

chymotrypsin at pH 6 and at 45ºC point to consecutive

reactions: the first step, heat denaturation, is followed by the

digestion of the damaged molecules. Similar kinetics could

not be observed for trypsin. We presume a higher sensitivity

of trypsin for autodigestion, resulting in a very short, unde-

tectable lag period.
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Figure 7. Effects of temperature on autolysis of α-chymotrypsin
Enzyme concentration: 1 mg/ml. Buffers (0.1 M) and temperatures:
citrate (O) pH 4 and 4 ºC, (l) pH 45 and 50ºC, phosphate (∆) pH 7
and 45ºC, (s) pH 7 and 50 ºC. For details, see text.


